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Abstract 

When the Laue technique is applied to ordinary diffrac- 
tometer devices and detector systems, problems appear 
with respect to the Lorentz factor that are unsatisfactorily 
treated in the literature. A detailed treatment of beam 
divergence and mosaic spread leads to a derivation of 
the exact expression for the Lorentz factor for X-ray 
diffraction with white radiation. This expression differs 
from the usual formulae if the mosaic spread and beam- 
divergence angles are of the order of magnitude of the 
diffraction angle. In addition, the different expressions 
for the Lorentz factor appearing in the literature are 
discussed in detail. 

Introduction 

The discovery of X-ray diffraction by crystals in 1912 
(Friedrich, Knipping & yon Laue, 1912) led to an 
exciting development in the field of crystallography. 
One year later, W. H. Bragg and W. L. Bragg deter- 
mined the structures of several crystals (Bragg & Bragg, 
1913; Bragg, 1913). In the following year, Lorentz 
derived his Lorentz factor for Lane reflections to cal- 
culate structure-factor moduli. Lorentz did not publish 
his calculations in the traditional way but he informed 
Debye in a letter about his results. His derivation appears 
in a note to Debye's paper about the 'Interferenz yon 
Rrntgenstrahlen und W?irmebewegung' (Debye, 1914). 
This may be the reason why no uniform application of 
the Lorentz factor for the Lane technique is in use. 

Since then, several attempts have been made to derive 
expressions for the integrated intensity of Laue reflec- 
tions and the Lorentz factor. From a superficial look 
at these results, it seems that different expressions are 
applied. The reasons for this confusion are different 
definitions and starting points for the calculations. The 
intention of this paper is: 

1. To discuss the effect of mosaic-block distribution 
and beam divergence on the diffracted intensity in the 
kinematic approximation. The results of this discussion 
are used for the derivation of an exact expression for the 
Lorentz factor. 

2. To resolve the confusion with respect to the differ- 
ent formulae given for the Lorentz factor. 
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Mosaic-block distribution and beam divergence 

The process of X-ray diffraction is sensitive to mosaic 
spread and beam divergence. These quantities influence 
the diffraction with monochromatic radiation in a dif- 
ferent way from white-beam diffraction. The effect of 
mosaic distribution and beam divergence on diffraction 
with monochromatic radiation has been treated in detail 
by Greenhough & Helliwell (1982). These authors derive 
and discuss general equations for the reflecting range 
of scattering vectors for oscillation-camera-data process- 
ing. From these equations, it is possible to distinguish 
whether a reflection is fully, partially or not recorded. 
In the case of partials, the fraction of the reflection can 
be calculated. Their treatment is based on an oscillating 
crystal. The basis for the following discussion is a 
stationary arrangement of beam and crystal. 

The presence of constituent crystallites not perfectly 
aligned within a single crystal is identical to an angular 
distribution of the scattering vectors. The probability 
distribution M(rc)  of the mosaic blocks depends on 
spherical coordinates r c = (Pc, ~°c, rc) in reciprocal 
space fixed to the crystal basis Be. Let us assume that 
M(rc)  is constant within the area F m and zero outside 
(Fig. 1): 

M(rc)  = constant for r c = (Pc, ~c, re) E Fm 

and (1) 

M(rc)  = 0 for r c = (Pc, qac, re) ~ Fro. 

F m is a fragment of a spherical surface with central point 
h The vector b = h i s  at r c = 0 and radius r c = Ihl - re. rc 

the average direction of all scattering vectors h i ending 
in F m. Each h i represents a single mosaic block of the 
crystal sample. In a similar way, the divergent incident 
beam IoM(rl) depends on r z = (Pt, ¢&, rt) in reciprocal 
space based on the laboratory basis Bt (Fig. 2). IoM(r/) 
follows the conditions 

IoM(rt) = constant for rt = (p,, opt, rt) E F M 

and (2) 

IoM(rt) = 0 for r t = (Pl, ~t, rt) ~[ FM.  

These conditions mean that the intensity in each direc- 
tion r z within F M is constant and that the radiation is 
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absolutely monochromatic with wavelength )~o. F ~  is 
a fragment of a spherical surface with central point at 
r z = 0 and radius r z = 1/~0 = r~ °. 

In general, M~rc)  is a function of Pc and qoc and 
the shape of F ~  depends on the orientation of the 
crystal sample. IOM(rt) Can be assumed to be constant 
for different values of pt and qo t within F/M. 

Diffraction with monochromatic radiation 

According to the Ewald construction, all (Pt, q°t, rt ) 
within F/M are central points of Ewald spheres with radii 
r~ °. rt b is the average direction of all r t within F M. 

For further discussion, let us assume that the crystal 
orientation is near to the ideal Bragg position with 
respect to rbc and r~. S 1 = S(r~) is an Ewald sphere with 
central point at r I = (p~, ~ ,  r~ °) within F ~  and inter- 
sects F m as shown in Figs. 1 and 3(a) at C 1 = C(r~).  
S 2 = S(r~) is a second Ewald sphere intersecting F m at 
C9 = C(r~).  Line C 1 crosses line C9 at (p~2, 19 

represents an The scattering vector r c = , ~c 
individual mosaic block of the crystal. This mosaic block 
is in reflection position simultaneously for the two Ewald 

C r" b 

r. --Ihl\l 

Fig. 1. Reciprocal space with area Fm representing the probability 
distribution of the mosaic blocks. 

Z! 

Fig. 2. Reciprocal space with area F M representing the probability 
distribution of the directions in the incident monochromatic beam. 

spheres S 1 and S 2 taken in this example. From this it 
can be seen that each scattering vector r~ jk''" E F m is 
simultaneously in diffraction position for several Ewald 
spheres S i, Sj,  Sk, .'.. (Fig. 3b). 

If the orientations of Bc and Bz are stationary and 
all possible Ewald spheres within F/M are considered, 
the mosaic blocks within a narrow strip of F m (Fig. 3c) 
are in diffraction position simultaneously (in this case 
F m is large enough and F M comparatively small). The 
thickness As of the strip depends on the angle of the 
beam divergence 2fl = p~nax _ p~nin. In order to measure 
the entire scattered radiation, several neighbouring strips 
must be collected by changing the relative orientation of 
Bc with respect to Bt. This procedure is called the 'scan 
of a reciprocal-lattice vector through the Ewald sphere'. 

A scan in equatorial geometry is equivalent to a 
movement of the crystal perpendicular to the periphery 
of the strips [direction g in Fig. 3(c)]. According to 
Greenhough & Helliwell (1982), the beam divergence 
2fl = p~n~ _/9~nin and the mosaic spread 2a = pm~ _ 
pmin c can be combined to give an effective mosaic spread 
AI2 = 2 (a  + ~) because both effects have identical 
reflecting range expressions (equations 1/1.14-111.16 of 
their treatment). In order to get the total reflection 
intensity, it is necessary that the sum of n scan intervals 
6i is z3S2 = E i  t~i. 

The well known Lorentz factor for equatorial ge- 
ometry and monochromatic radiation (e.g. von Laue, 
1960) is a consequence of the different passing velocities 
of scattering vectors through the Ewald-sphere surface 
during the scans: 

L M = Aa/sin 20. (3) 

This Lorentz factor can also be applied to stationary 
measurements with monochromatic radiation: The diver- 
gence area F ~  must be large enough so that not only a 
narrow strip of F m but all scattering vectors within F m 
are simultaneously in diffraction position. This special 
case is different from the treatment of Greenhough & 
HeUiwell (1982) because no movement of the crystal is 
necessary to get the full reflection intensity. 

Buras & Gerward (1975) discussed the relations be- 
tween integrated intensities in monochromatic and poly- 
chromatic diffraction methods. Table 1 of their paper 
contains no Lorentz factor for a stationary single crystal 
and monochromatic radiation (method A2). According to 

(a) (b) (c) 

Fig. 3. Lines of intersection of two (a) and several (b and c) Ewald 
spheres with Frn. 
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these authors, no integration is possible in this method. 
In contrast, the angular opening of the incident beam is 
taken into consideration in the calculations of Kalman 
(1979). His result is that the Lorentz factors of method 
(H-l) (monochromatic radiation and stationary crystal) 
and method (H-2) (monochromatic radiation and rotating 
crystal) are identical (for k~ = 0, i.e. equatorial geom- 
etry). This result will be used for the derivation of the 
Lorentz factor for polychromatic radiation. 

Diffraction with white radiation 

In order to discuss the geometric conditions for white- 
beam diffraction, definition (2) of the beam divergence 
IOM(rL) has to be extended in so far that the radial 
component r l is variable and not fixed to r I = 1/~ 0 = 

rt x°. So F M of a monochromatic beam will be replaced 
by a volume Vi of a polychromatic beam with radial 
component 1//~ma x < r I = r/~x < 1//~min: 

IoL(rt) =constant  for rt = (pl,~oz,r~) ~ Vi 

and 

IoL(rz) = 0 for r t = (Pt, ~Pt, rz) q~ Vi. 

(4) 

The condition of constant intensity IoL(rl) within Vi 
is a simplifying assumption. All (pt, qoz,rt) within Vi 
are possible central points of Ewald spheres with radii 
rt ~x = 1/A x (Fig. 4). Only a small part V/L of Vi 
is selected by the distribution of the scattering vectors 
within F m for the diffraction process (Fig. 5). 

The mosaic distribution, in combination with the 
divergence of the incident beam, selects a subinterval 

/~ max] determining [/~min, the wavelength of wavelengths h h 
distribution of the Laue reflection. This subinterval will 
be calculated later. 

The smaller the mosaic spread 2o~ and the beam 
divergence 2/3 (Fig. 5 and Appendix), the smaller is 

h h )~max]" Also, [/~min, the radial angular spread # of a re- 
flection depends on a and/3. In general, # = 2(2a+2/3). 

If synchrotron radiation is used, the beam divergence 
is 2/3 '~ 0. In this case, the spread of the reflection is 

_~ 4a.  Andrews, Hails, Harding & Cruickshank (1987) 
reported on the observed effect of mosaic spread on Laue 
spot profiles and their interpretation. 

In order to satisfy the diffraction condition for a 
scattering vector r c E Fro, a plane Pc perpendicular to 
r c must be constructed in such a way that Pc intersects 
r c at re/2. According to the Ewald construction, each 
(Pc, ~°c, re) E Pc is a possible central point of an Ewald 
sphere. The entire volume Viz E Vi that is selected for 
the diffraction process consists of all Pc = (Pc, qoc, re) 
following the condition 

VIL = {pc = (pc, opt, re)} : p c E P c  A p c E v i  

with 
Pc. (5) Pc l rc A r e E F  m A ~rcE 

V/L is the part with dark shading in Fig. 5; in the light 
part of Vi, the diffraction condition cannot be satisfied. 

From now on, monochromatic and white-beam 
diffraction for a stationary arrangement of beam and 
crystal are compared with each other. If F M of the 
monochromatic beam is large enough, the total area F m 
and, consequently, all mosaic blocks are simultaneously 
in diffraction position. The integrated intensity I M can 
be recorded by a single measurement as a consequence. 
Let us consider that F M has a 'thickness' ds = d(1/A), 
i.e. that the radiation has an infinitesimal bandwidth. 
Each volume element dV/M : d F M  ds E F M  ds = Vi M 

contains the central point of an Ewald sphere satisfying 
the Bragg condition. The number N M of these volume 
elements is proportional to the square of the radius of 
the Ewald spheres (1/)Q2: N M ¢x ViM (X Fi  M (3( 1/A e. 

The same considerations are valid for white-beam 
diffraction. Each volume element dVi L E ViL contains 
the central part of an Ewald sphere satisfying the Bragg 
condition (Fig. 5). The total integrated intensity I L 
results from ViL. The number N L of these Ewald 
spheres is proportional to ViL. Some simple geometric 
relations lead to the result (see Appendix) that ViL c< 
1/ (A3tan0)  o¢ (Ihl 3 cos 0)/  sin4 0. 

_ ._ [ ZI 

Fig. 4. V i from a polychromatic incident beam with divergence. 

h z, 
vi = ~+m ~ 1  i 

Fig. 5. Within V/L, the Bragg condition is satisfied. 2a is the mosaic 
angle and 2/3 the angle of beam divergence. 
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The quotients ViL /Vi M and N L  / N  M are propor- 
tional to the quotient of the integrated intensities I L = 
IFI2LLPLIoL and IM = IFI LMPMXoM: 

N Z / N M / M 

OC l L / I M  

OC IFI2LLPLIoL/(IFI2LMPMIoM) 

c( L L / L  M. (6) 

The polarization factor Pc is equal to PM for unpo- 
larized radiation. Therefore, V~L/V~ M is proportional to 
the quotient of both Lorentz factors L L and L u .  "~)Vlth 
the proportional constant set to unity, the Lorentz factor 
L L for white-beam diffraction may be written 

L L = LM(ViLIv i  M) 

= L M I [ I I ( , t  3 t a n O ) ] / ( l I , V )  

= (,~3/sin 20)cos 0/(,t sin 0) 
= Ag/sin 2 0. (7) 

Exact expression for the Lorentz factor 

The previous derivation of the Lorentz factor (7) is based 
on two approximations (see Appendix): 2a and 2/3 <</9. 
This assumption is normally permitted. Otherwise, an 
exact expression for the Lorentz factor has to be used. 

If synchrotron sources are used for single-crystal 
data collection by the Laue technique (e.g. Bartunik & 
Borchert, 1989; Helliwell, Gomez de Anderez, Habash, 
HeUiwell & Vernon, 1989), the properties of the radia- 
tion and the large distance between source and crystal 
lead to a practically vanishing divergence 2/3 _~ 0. 
Consequently, the exact Lorentz factor is needed for 
2a ~_ O. 

The Laue diffractometer used by the author (Lange & 
Burzlaff, 1992, 1995) works with a conventional tung- 
sten X-ray tube. The present tube-crystal distance is set 
to 160 mm. This short distance between tube and crystal 
is necessary to obtain sufficient intensity for single- 
crystal data collections with an accuracy comparable to 
the monochromatic technique. The X-ray tube that is in 
use is a Siemens type FK 60-04 W with a focal-spot 
size of 0.4 x 0.8 mm and a working voltage of 50 kV. 
A medium-sized single-crystal sample of about 0.6 mm 
diameter leads to a divergence angle 2/3 - 0.50 °. If a 
reciprocal-lattice vector h is in diffraction position at a 
short wavelength, the value of the Bragg angle 0 can 
have the same order of magnitude as 2a and 2/3. In this 
case, the approximation a and/3 ~ 0 leads to deviations 
using the Lorentz factor (7). 

To get the exact expression (9) for the Lorentz factor, 
1/(A 3 tan0) in (7) is replaced by relation (27) of the 
Appendix: 

v~ L o( Ihl3{sin(0 - a)/[sin2(9 - a +/3) 

x sin2(0 - a - /3)]  " 

- sin(0 + a)/[sin2(0 + a +/3)  
x sin2(0 + - /3 ) ] } ,  

which leads to 

(8) 

L L = A 2 sin 2/9/cos 0 

x {sin(0 - a)/[sin2(0 - a +/3) sin2(0 - a - 13)] 

- s i n ( 0  + a)/[sin2(0 + a +/3) sin2(0 + a -/3)]}.  

(9) 

Tables 1 and 2 show the dependence of D(8) on the 
Bragg angle 0. The normalized quantity D(9) is the 
quotient of the exact Lorentz factor Lexact (9) and Lapprox 
(7) multiplied by a normalization factor N: 

D(O) = (Lcxact/Lapprox)N 

with 

so that 

N = o,~o(LaPpr°x/Lexact) = constant, 

lim D ( 0 ) =  1. (10) 
c~,#~o 

Table 2 shows that the quotient of Lexact and Lapprox 
increases rapidly with decreasing/9. The author intends 
to verify his calculations with the Laue diffractometer 
experimentally. These experiments are difficult since the 
signal-to-background ratio is poor for small diffraction 
angles. Furthermore, the wavelength distribution of the 
white radiation must be well known. 

Discussion of the Lorentz factor 

The modulus of the structure factor IF(h) l  can be 
derived from the integrated intensity I(A, h) in the kine- 
matical approximation with the assumption of negligible 
crystal sample absorption by 

i(A, h) oc IF(h)I2pL(A,O)io(A).  (11) 

L(A, 0) is the Lorentz factor and P the polarization 
factor. Three different proposals for the Lorentz factor 
can be found: 

1. L = A 2/sin 2 0 (e.g. yon Laue, 1926; Lorentz, cited 
in Debye, 1914); 

2. L = A3/sin2 0 (e.g. Gonschorek, 1983); 
3. L = A4/sin20 (e.g. Rabinovich & Lourie, 1987; 

Zachariasen, 1945). 
These formulae seem to be contradictory. A critical 

comparison of the different papers, however, shows that 
these discrepancies result from a different use of the 
terms 'integrated intensity' I(A, h) and 'intensity of the 
incident beam' I0(A) by the authors. This problem is 
briefly discussed in the paper by Kalman (1979). The 
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Table 1. Parameters 

Parameter Example 1 Example 2 
2a (o) 0.15 0.30 
2~ (o) 0.50 0.50 
Ihl (A -1) 0.10 0.07 
Tube voltage (kV) 50 50 

mosaic spread is the sum of the mosaic spread 2c~ and 
the beam divergence 2/3, AY2 = 2(c~ +/3) (notice that 
AY2 ¢ ~). With the Bragg equation, AA h is 

AA u = 2 ( c o s 0 / l h l ) A ~ 2  

: ( 2 A S 2 / I h l ) c o s { a r c s i n [ ( l h l / 2 ) A ] } .  (16) 

Table 2. Calculated values for D(O) 

Example 1 Example 2 

0(°) D(O) A (A) E (keV) 0(°) D(O) A (A) E (keV) 

0.75 1.82 0.37 33.2 
1.00 1.36 0.50 24.9 

1.25 1.16 0.29 42.6 1.25 1.21 0.62 19.9 
1.50 1.11 0.35 35.5 1.50 1.14 0.75 16.6 
2.00 1.06 0.47 26.6 2.00 1.07 1.00 12.4 
3.00 1.03 0.70 17.8 3.00 1.03 1.50 8.3 
4.00 1.01 0.93 13.3 4.00 1.02 2.00 6.2 
7.00 1.00 1.63 7.6 7.00 1.01 3.50 3.6 

discrepancies vanish if the terms are correctly defined 
and used for the discussion. 

Relation (11) can be written in greater detail: 

N(A)/AA h cx JF(h)[2P(A2/sin 20)[No(~)lzX~]. (12) 

N(A) is the number of counted photons of the selected 
reflection F(h )  within the interval AA h. The quantity 
AA h is the interval that is selected by the scattering 
vector h. It depends on Ihl, A and the mosaic spread [see 
(16)]. N0(A) is the number of photons in the incident 
beam within the interval AA, which is a fixed interval. 
With the transformation relation 

AE = haw = IdE/dA]AA = (hc/A2)AA, (13) 

(12) can be changed to 

N(A)/AEh ~ IF(h)12P(,X4/sin 2 0)[No(,X)/zaA]. (14) 

If N(A)/AEh is used, the expression A4/sin 2/9 appears 
and is also called the 'Lorentz factor' in the litera- 
ture. Multiplying (14) with energy E, one obtains an 
integrated intensity I per interval AEh: 

]/LIEh = [N(A)/Z~Eh]E 
c< IF(h)12P(Aa/sin 2 0)[No(A)/AA]. (15) 

The factor A3/sin 2 0 in (15) is also falsely called the 
'Lorentz factor' when it is used in this way. N0(A)/AA 
appearing in (12), (14) and (15) is not the 'intensity of 
the incident beam' but the number of incident photons 
No(A) within AA. 

The choice of one of these expressions depends on 
the interpretation of the measured data: 

: [,~min,)~max] is 1. The wavelength interval Z~)k h h h 
selected by the effective mosaic spread. The effective 

N and A of a Laue reflection can be determined using 
an energy-resolving detector. N0(A)/AA of the inci- 
dent beam for X-ray tube Bremsstrahlung can be taken 
from International Tables for Crystallography (1992) 
and Kramers (1923). From these values and the Lorentz 
factor A2/sin 2 0, I F ( h ) l  can  be calculated by (12). 

2. Converting (16) by using (13) so that AEh is a 
function of AY2 then (14) is the correct equation. 

3. Formula (15) is the correct relation if N/AEh is 
multiplied by E of the reflection or when a detector 
system is used that directly measures a quantity propor- 
tional to the total energy N(A)E (e.g. Blank, Burzlaff 
& Htimmer, 1982). 

The results of the previous discussion are summa- 
rized: different expressions for the Lorentz factor [(12), 
(14) and (15)] exist. In the literature, these expressions 
are applied in the way previously described. This is why 
some authors obtain reasonable results although they 
do not always know why they have to apply a special 
'Lorentz factor'. 

Relation (12) is the only one containing the quantities 
N0(A)/AA and N(A)/AA h, which have the same physi- 
cal meaning. The expressions for the primary and the 
secondary beams are different in (14) and (15). One can 
convert (14) and (15) using (13) so that the expressions 
for the primary and the secondary beams also have the 
same physical meaning. 

Equation (14) leads to 

N(A)/Z~Eh cx IF(h)]ZP(A2/sin z O){A2[No(A)/AA]} 

with 

A2[No(A)/AIA] = hc[No(A)IAIE] cx No(A)IAIE. (17) 

Equation (15) leads to 

[N(A)/AEh]E ~ IF(h)12P(A2/sin 20){A[No(A)/Z~A]} 

with 

= [No(A)IAE]E. (18) 

Lorentz derived his factor as a geometric correction 
factor. The additional quantities A 2 in (17) and A in (18) 
are not a part of the Lorentz factor but a consequence 
of the different representations of the primary and the 
secondary beams. Only the expression A2/sin20 is the 
real Lorentz factor in accordance with the intention of 
H. A. Lorentz. The other factors consist of the Lorentz 
factor and the additional quantities A and A 2. 
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A P P E N D I X  
Derivat ion of  the volume V~ r 

It is not necessary for the derivation of V~ L that the basis 
area of the cone has a circular shape as shown in Fig. 
4. In reality, the shape depends on the orientation of 
the crystal. Any shape can be assembled by infinitesimal 
squares. So it is sufficient to calculate V~ h for a pyramidal 
cone with quadratic basic area. Necessary parameters 
for the derivation are shown in Fig. 6 and given by the 
following equations: 

a l  =[hl / [2sin(O + a - 13)], 
(19) 

a2 = lh l / [2s in (0  - a - /3 ) ] ,  

bl = 2al  tan/3 = Ihl tan/3/sin(O + a - / 3 ) ,  
(20) 

b2 = 2a2 tariff = Ih] t a n / 3 / s i n ( O  - a - fl),  

¢1 = ]hl/[2sin(O + a +/3)1, 
(21) 

c2 = [h[/[2sin(O - a +/3)],  

V = 1/3  G H .  G is the basis area and H is the height 
of the cone perpendicular to G. The resulting volume 
A V  is 

1 H ( G 2  a l )  = ( [h l /6 ) (a2  - G~). (24) A V =  5 

The perpendicular height of both cones is [hi /2  and 
the basis areas are G1 and G2. In the following, G2 
is calculated in detail: 

G2 = (d9./2 + be/2)e2  

= [1/sin(O - a +/3)  + 1/sin(O - a - /3 ) ]  

[ 'hl2tan/3sin(2/3) ] 
x 4sin(0 - a +/3)  sin(0 - a - / 3 )  

[ s i n ( 0 -  a -  f l ) +  sin(0 - a + / 3 ) ]  
= sin2(0 - a +/3)  sin2(0 - a - 

× Ihl 2 tan /3 sin(2/3)/4 

[ sin(0 - a)  cos /3 ] 

= sin2(0 - a +/3)  sin2(0 - a - fl) 

x Ihl ~ tan/3 sin(2/3)/2. (25) 

d l  "- 2 e l  tan/3  = Ihl t a n / 3 / s i n ( 0  + c~ + / 3 ) ,  
(22) 

d2 = 2c2 tan/3 = Ihl tan/3/s in(0  - a +/3) ,  

e l  -- Ihl sin(2/3)/[2 s in(O+ a +/3)  sin(0 + a - /3) ] ,  

(23) 

e2 = Ihl sin(2/3)/[2sin(0 - a +/3)  sin(0 - a - /3) ] .  

0 is the Bragg angle, 2a  the angle of the mosaic spread, 
2/3 the beam divergence angle and Ih] the modulus of 
the reciprocal-lattice vector. The volume of a cone is 

, -  0 - ~ - p  

+ ( l +  13 

. .  o. b - . , A . ,  

Fig. 6. Parameters for the derivation of V/L. 

The calculation for G1 yields 

G1 = sin2(0 + a +/3)  sin2(0 + a - / 3 )  

x [hi 2 tan/3 sin(2/3)/2. 

The resulting volume A V  is 

(26) 

sin(0 - a)  
A V  o¢ Ihl a sin=(0 _ ~ + / 3 )  sin2( 0 _ a - / 3 )  

_ sin(0 + a)  ] 

sin2(0 + a +/3)  sin2(0 + a - / 3 ) J  " 
(27) 

For 2/3 << 0, AV is approximately 

lira A V  o~ Ih l3 [ sMe - ~)  sin4(0 + ~) 
/ ~ 0  

- sin(o + oO sin4(o - 0,)] 
× [sin4(o + ,~) si.4(o _ ,~)]-i 

= 81hl3{[~in~(O + oO - sin~(O - 00] 

x [cos(2a) - cos(20)] -3} 

= 21hla{[3 sin(0 + a)  - sin(30 + 3a)  

- 3  sin(0 - a)  + sin(30 - 3a)] 

x [cos(2a)  - cos(20)] - a }  

= 2[hla{[6cos 0 sin a - 2 cos(30) sin(3a)] 

x [co~(2~) - cos(2O)]-~} .  (28) 
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The next approximation 2a  - ,  0 leads to the final result 
for zaV: 

l im A V  c< [ h l a 6 s i n a [ c o s 0 -  cos (a0 ) ] / s in60  
fl,o~0 

oc Ih136a[cos O - cos(30) ] / s in  6 0 

cx [hi3 [cos0/sin 4 0] 

cx 1/(A 3 tan/9). (29) 
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A b s t r a c t  

The Working Group has examined recent recommen- 
dations for evaluating and expressing uncertainty in 
measurement  [Guide to the Expression of  Uncertainty in 
Measurement, International Organization for Standard- 
ization (ISO, 1993)]. The present publication updates 
an earlier report of  the IUCr Subcommittee on Sta- 
tistical Descriptors [Schwarzenbach, Abrahams, Flack, 
Gonschorek,  Hahn, Huml, Marsh, Prince, Robertson, 
Rollett  & Wilson (1989). Acta Cryst. A45, 63-75].  This 
new report presents the concepts of  standard uncertainty, 
of  combined standard uncertainty, and of  Type A and 
Type B evaluations of  standard uncertainties. It expands 

* Appointed 4 March 1993 as a Working Group of the International 
Union of Crystallography Commission on Crystallographic Nomencla- 
ture. The final report of the Working Group was accepted on 20 
September 1994 by the Commission and 15 December 1994 by the 
Executive Committee. 
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the earlier dictionary of  statistical terms, recommends 
replacement of  the term estimated standard deviation 
(e.s.d.) by standard uncertainty (s.u.) or by combined 
standard uncertainty (c.s.u.) in statements of  the sta- 
tistical uncertainties of  data and results, and requests a 
complete description of  the experimental  and computa- 
t ional procedures used to obtain all results submitted to 
IUCr publications. 

I n t r o d u c t i o n  

The Intemational  Organization for Standardization (ISO) 
has  issued a document  (ISO, 1993), hereafter referred 
to as Guide, w i t h  the purpose of  establishing general 
rules for evaluating and expressing the uncertainty of  the 
result of  a measurement.  Based on a recommendat ion of  
the Comit6 International des Poids et Mesures, the rules 
are intended to be applicable to a broad spectrum of  
measurements.  A recent NIST Technical Note (Taylor 
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